# Recent questions tagged functions 1
Let $f$ be an injective map with domain $\left \{ x, y, z \right \}$ and the range $\left \{ 1, 2, 3 \right \}$ such that exactly one of the following statements is correct and the remaining are false. $f\left \{x \right \}=1,f\left ( y \right )\neq 1,f\left ( z \right )\neq 2.$ The value of $f^{-1}\left ( 1 \right )$ is $x$ $y$ $z$ None of the above
2
Answer the question based on the information given below: Let x and y be real numbers and let $f(x, y) = |x+y|, F(f(x, y)) = -f(x,y) \text{ and } G(f(x, y)) = -F(f(x, y))$ Which of the following expressions yields $x^2$ as a result? $F(f(x, -x)).G(f(x, -x))$ $F(f(x, x)).G(f(x, x)).4$ $-F(f(x, x)).G(f(x, -x)) \: \log_2 16$ $f(x,x).f(x,x)$
3
Answer the question based on the information given below: Let x and y be real numbers and let $f(x, y) = |x+y|, F(f(x, y)) = -f(x,y) \text{ and } G(f(x, y)) = -F(f(x, y))$ Which of the following statements is true? $F(f(x,y)) .G(f(x,y)) = -F(f(x,y)).G(f(x,y))$ $F(f(x,y)) .G(f(x,y)) > -F(f(x,y)).G(f(x,y))$ $F(f(x,y)) .G(f(x,y)) \neq G(f(x,y)).F(f(x,y))$ $F(f(x,y)) +G(f(x,y)) + f(x,y)= f(-x,-y)$
4
Answer the questions on the basis of the information given below: $f_1(x)$ =x $0 \leq x \leq 1$ =1 $x \geq 1$ =0 otherwise $f_2(x)$ =$f_1(-x)$ for all x $f_3(x)$ =$-f_2(x)$ for all x $f_4(x)$ =$f_3(-x)$ ... $f_2(-x) = f_4(x) \: \text{for all x}$ $f_1(x) + f_3(x) = 0 \: \text{for all x}$
5
A quadratic function f(x) attains a maximum of 3 at x=1. The value of the function at x=0 is 1.What is the value of f(x) at x=10? -119 -159 -110 -180 -105
6
If the roots of the equation $x^3 -ax^2 +bx - c =0$ are three consecutive integers, then what is the smallest possible value of $b$? $-\frac{1}{\sqrt{3} }$ -1 0 1 $\frac{1}{\sqrt{3} }$
Let $f(x)$ be a function satisfying $f(x) f(y) =f(xy)$ for all real $x, y$. If $f(2)=4$, then what is the value of $f(\frac{1}{2})$ 0 $\frac{1}{4}$ $\frac{1}{2}$ 1 cannot be determined
Let $f(x) = ax^2 + bx +c$, where $a$, $b$ and $c$ are certain constants and $a \neq 0$. It is known that $f(5) = -3 f(2)$ and that 3 is a root of $f(x)=0$. What is the other root of $f(x)=0$? -7 -4 2 6 cannot be determined