# NIELIT 2019 Feb Scientist D - Section D: 4

93 views

If $P$$\left (x, y \right) is any point on the line joining the points A$$\left (a, 0 \right)$ and $B$$\left(0, b \right)$ then the value of $bx+ay-ab$ is :

1. $1$
2. $-1$
3. $0$
4. $2$

recategorized

Correct option is C.

Just take x = 0 or y=0 and substitute in equation.

ago 76 points 1 2

As $P(x,y)$ is any point on the line joining the points $A$ and $B$,

Take $P(x,y) = A(a,0) \implies x=a,y=0$

$bx +ay – ab = ba + a\cdot0- ab = 0$

Option C.

ago 346 points 1 2 5

## Related questions

1 vote
1
89 views
If $a^{2}+b^{2}+c^{2}=1$, then which of the following can't be the value of $ab+bc+ca$ ? $0$ $\frac{1}{2}$ $\frac{-1}{4}$ $-1$
2
91 views
Find the value of $x$ satisfying : $\log_{10} \left (2^{x}+x-41 \right)=x \left (1-\log_{10}5 \right)$ $40$ $41$ $-41$ $0$
If $8v-3u=5uv \: \: \& \: \: 6v-5u=-2uv$ then $31u+46v$ is: $44$ $42$ $33$ $55$
If $x=\dfrac{\sqrt{10}+\sqrt{2}}{2}, \: \: y=\dfrac{\sqrt{10}-\sqrt{2}}{2}$ then the value of $\log _{2}(x^{2}+xy+y^{2})$ is: $0$ $1$ $2$ $3$
If $x+y+z=2, \:\: xy+yz+zx=-1$ then the value of $x^{3}+y^{3}+z^{3}$ is: $20$ $16$ $8$ $0$