# NIELIT 2019 Feb Scientist D - Section D: 6

1 vote
86 views

If $a^{2}+b^{2}+c^{2}=1$, then which of the following can't be the value of $ab+bc+ca$ ?

1. $0$
2. $\frac{1}{2}$
3. $\frac{-1}{4}$
4. $-1$

recategorized

Given, $a^{2}+b^{2}+c^{2}=1$

We know that, $(a+b+c)^2=a^{2}+b^{2}+c^{2}+2(ab+bc+ca)$

Since square of a number is always positive, then $(a+b+c)^2\geq 0$

$\Rightarrow a^{2}+b^{2}+c^{2}+2(ab+bc+ca) \geq 0$

Now lets examine each option

1. $ab+bc+ca =0$

$1+2(0) = 1 \geq 0$ (Possible value)

$\therefore ab+bc+ca =0$ can be a possible value.

1. $ab+bc+ca =\cfrac{1}{2}$

$1+2\left(\cfrac{1}{2}\right) = 2 \geq 0$

$\therefore ab+bc+ca =\cfrac{1}{2}$ can be a possible value.

1. $ab+bc+ca =\cfrac{-1}{4}$

$1+2\left(\cfrac{-1}{4}\right) = 1-\cfrac{1}{2} = \cfrac{1}{2} \geq 0$

$\therefore ab+bc+ca =\cfrac{-1}{4}$ can be a possible value.

1. $ab+bc+ca = -1$

$1+2(-1) = -1 \ngeqslant 0$

$\therefore ab+bc+ca = -1$ can’t be a possible value.

Hence, option D is the correct.

If $a^{2}+b^{2}+c^{2}$ then $ab+bc+ca$ lies in the interval $\left[\cfrac{-1}{2},1\right]$

For proof see this: https://gateoverflow.in/39510/gate2015-ec-2-ga-9

If you know above result then you can directly say answer is option D.

112 points 2 30 41
edited

## Related questions

If $P$\left (x, y \right)$is any point on the line joining the points$A$\left (a, 0 \right)$ and $B$\left(0, b \right)$then the value of$bx+ay-ab$is :$1-102$2 votes 1 answer 2 90 views Find the value of$x$satisfying :$\log_{10} \left (2^{x}+x-41 \right)=x \left (1-\log_{10}5 \right)4041-410$0 votes 0 answers 3 54 views If$8v-3u=5uv \: \: \& \: \: 6v-5u=-2uv$then$31u+46v$is:$44423355$1 vote 1 answer 4 94 views If$x=\dfrac{\sqrt{10}+\sqrt{2}}{2}, \: \: y=\dfrac{\sqrt{10}-\sqrt{2}}{2}$then the value of$\log _{2}(x^{2}+xy+y^{2})$is:$0123$0 votes 0 answers 5 75 views If$x+y+z=2, \:\: xy+yz+zx=-1$then the value of$x^{3}+y^{3}+z^{3}$is:$201680\$