# NIELIT 2019 Feb Scientist D - Section D: 9

106 views

Find the mode of the following data :

$\begin{array}{|cl|cI|}\hline &\text{Age} & \text{0-6} & \text{6-12} & \text{12-18} & \text{18-24} & \text{24-30} & \text{30-36} & \text{36-42} \\ \hline &\text{Frequency} & \text{6} & \text{11} & \text{25} & \text{35} & \text{18} & \text{12} & \text{6} \\ \hline \end{array}$

1. $20.22$
2. $19.47$
3. $21.12$
4. $20.14$

recategorized

1 vote
$\text{Mode of the grouped data can be found in the following formula:}$

$\text{Mode=l+($\frac{f_1-f_0}{2f_1-f_0-f_2})*h$}$

where

$\text{l= lower limit of modal class}$

$\text{h=Size of class}$

$\text{$f_0$=Frequency of the class preceding the modal class}$

$\text{$f_1$=Frequency of the modal class}$

$\text{$f_2$=Frequency of the class succeeding the modal class}$

Here The maximum class frequency is $35$ and the class interval corresponding to this frequency is $18-24$. Thus, the modal class is $18-24$

$\therefore$ $\text{Mode=18+$(\frac{35-25}{2*35-25-18})*6$}$.

$\text{Mode=18+$(\frac{10}{70-25-18})*6$}$

$\text{Mode=18+$\frac{60}{27}$=20.22}$

Option $A$ is correct here.
3.5k points 4 10 63

## Related questions

1
92 views
The greatest number of four digits which is divisible by each one of the numbers $12$, $18$, $21$ & $28$, is : $9848$ $9864$ $9828$ $9636$
2
100 views
In a swimming-pool $90$ m by $40$ m, $150$ men take a dip. If the average displacement of water by a man is $8$ cubic metres, what will be rise in water level ? $30$ cm $33.33$ cm $20.33$ cm $25$ cm
A conical tent is to accommodate $10$ persons. Each person must have $6$ $m$^{2}$space to sit and$30m$^{2}$ of air to breath. What will be height of cone ? $37.5$ $m$ $150$ $m$ $75$ $m$ $15$ $m$
A school has $378$ girls and $675$ boys. All the students divided into strictly boys and strictly girls students sections. All the sections in the school has same number of students. What is the number of sections in the school? $27$ $36$ $39$ $23$
If $P$\left (x, y \right)$is any point on the line joining the points$A$\left (a, 0 \right)$ and $B$\left(0, b \right)$then the value of$bx+ay-ab$is :$1-102\$