# NIELIT 2019 Feb Scientist C - Section D: 1

115 views

The minute hand is $10$ cm long. Find the area of the face of the clock described by the minute hand between $9$ a.m and $9:35$ a.m.

1. ${183.3\ cm^{2}}$
2. ${366.6\ cm^{2}}$
3. ${244.4\ cm^{2}}$
4. ${188.39\ cm^{2}}$

recategorized
0

Ans is option (D)

The minute covers  $360^{\circ}$  in $60$ minutes. Hence, it will cover  $\frac{360^{\circ}\times 35}{60}=210^{\circ}$  in $35$ minutes.

Now, area of  a sector with radius $r$ units and $\theta$ angle subtended at the centre ,is :  $\frac{1}{2}\times r^{2}\times \theta$  units   ($\theta$ in radian) .

So, $210^{\circ}=210^{\circ}\times \frac{\pi}{180^{\circ}}$  radians  $=\frac{11}{3}$ radians

$\therefore$  Area of the sector:  $\frac{1}{2}\times 100\times \frac{11}{3}=183.33$ cm$^{2}$
238 points 2 2 4

## Related questions

1
67 views
If a clock strikes once at one o’clock, twice at two o’clock and twelve times at $12$ o’clock and again once at one o’clock and so on, How many times will the bell be struck in the course of $2$ days? $156$ $312$ $78$ $288$
2
61 views
Determine $a+b$ such that the following system of equations: $2x-(a-4)y=2b+1 \text{ and }4x-(a-1)y=5b-1$ infinite solutions. $11$ $9$ $10$ $8$
The line $x+y=4$ divides the line joining $\text{(-1,1) & (5,7)}$ in the ratio $\lambda : 1$ then the value of $\lambda$ is: $2$ $3$ $\dfrac{1}{2}$ $1$
The value of $\dfrac{1}{6}+\dfrac{1}{12}+\dfrac{1}{20}+ \dots \dots \dots+\dfrac{1}{90}$ is: $\dfrac{1}{5}\\$ $\dfrac{2}{5} \\$ $\dfrac{3}{5} \\$ $1$