# NIELIT 2019 Feb Scientist C - Section D: 11

102 views

The expressions $\dfrac{\tan A}{1-\cot A}+\dfrac{\cot A}{1-\tan A}$ can be written as:

1. $\sin A \ \cos A+1$
2. $\sec A \ cosec A+1$
3. $\tan A+ \cot A+1$
4. $\sec A +cosec A$

recategorized

Ans is option (C)

Substitute  $cotA=\frac{1}{tanA}$  in the above question, we get

$\frac{tan^{2}A}{tanA-1}+\frac{1}{tanA(1-tanA)}$

Simplifying further we get,    $\frac{1}{tanA-1}[tan^{2}A-\frac{1}{tanA}]$

$\Rightarrow$   $\frac{tan^{3}A-1}{(tanA-1)tanA}$

$\Rightarrow$   $\frac{(tanA-1)(tan^{2}A+tanA+1)}{(tanA-1)tanA}$     (using  $a^{3}-b^{3}=(a-b)(a^{2}+ab+b^{2})$)

$\Rightarrow$  $tanA+cotA+1$
238 points 2 2 4

## Related questions

1 vote
1
113 views
If $\theta$ is an acute angle and $\tan\theta+\cot\theta =2$, Find the value of $\tan ^{7}\theta +\cot ^{7}\theta$. $-2$ $1$ $2$ $0$
2
87 views
If $x=\cos1^{\circ} \cdot \cos2^{\circ} \cdot \cos3^{\circ}\dots\cos89^{\circ}$ and $y=\cos2^{\circ}\cos6^{\circ}\cos10^{\circ}\dots\cos86^{\circ}$ then what the integer is nearest to $\dfrac{2}{7}\log _{2} \left( \dfrac{y}{x}\right )$is: $19$ $17$ $15$ $21$
1 vote
If $cosec\theta-\sin\theta=1$ and $\sec\theta-\cos\theta=m$, then $l^{2}m^{2}(l^{2}+m^{2}+3)$ equals to: $1$ $2$ $2 \sin\theta$ $\sin\theta \cos\theta$
If $\ Sinx+Sin^{2} x=1$ then $\ Cos^{8}x+ 2 \ Cos^{6} x+ \ Cos^{4} x$ equals to : $0$ $-1$ $1$ $2$
$\ Sin^{-1}\left [ \frac{3}{5} \right ] + \tan^{-1}\left [ \frac{1}{7} \right ]=$ $\frac{\pi }{4}$ $\frac{\pi }{2}$ $\ Cos^ {-1} \frac{4}{5}$ $\pi$